POWER QUALITY ANALYZER PW3198

Record and Analyze Power Supply Problems Simultaneously with a Single Unit

The New World Standard for Power Quality Analysis

Never Miss the Moment
- Detect power supply problems and perform onsite troubleshooting
- Do preventive maintenance to avert accidents by managing the power quality

CAT IV-600V Safety Standard
- Meets the CAT IV safety rating required to check an incoming power line
- Safe enough to measure up to 6,000Vpeak of transient overvoltage

Easy Setup Function with PRESETS
- Just select the measurement course, wiring, and clamps
- Automatic one-step setup based on measurement conditions

Compliant with New International Standards
- International power quality measurement standard IEC 61000-4-30 Edition 2 Class A
- High precision with a basic voltage measurement accuracy of 0.1%

www.hioki.com
One Single Unit Can Solve All Your Power Supply Problems

The number of power supply problems is increasing as power systems are becoming more and more complicated—all due to the rising use of power electronics devices plus a growing installed base of large systems and distributed power supplies. The quickest way to approach these problems is to understand the situation quickly and accurately. The PW3198 Power Quality Analyzer is ready to effectively solve your power supply problems.

Troubleshooting

✔ Understand the actual power situation at the site where the problem is occurring (e.g., the equipment malfunction, failure, reset, overheating, or burning damage).
✔ Ideal for troubleshooting solar and wind power generation systems, EV charge stations, smart grids, tooling machines, OA equipment (e.g., computers, printers, and UPS), medical equipment, server rooms, and electrical equipment (e.g., transformers and phase-advancing capacitors).

Field Survey and Preventive Maintenance

✔ Perform long-term measurements of the power quality and study problems that are difficult to detect or that occur intermittently.
✔ Maintain electrical equipment and check the operation of solar and wind power generation systems.
✔ Manage the parameters with a control set point, such as a voltage fluctuation, flicker, and harmonic voltage.

Power (Load) Survey

✔ Study the power consumption and confirm system capacity before adding load.
Class A is defined in the international standard IEC61000-4-30, which specifies compatibility with power quality parameters, accuracy, and standards to enable comparison and discussion of the measurement results of different measuring instruments. The PW3198 is compliant with the latest IEC61000-4-30 Edition 2 Class A standard. The instrument can perform measurements in accordance with the standard, including continuous gapless calculation, methods to detect events such as dip, swell, and instantaneous power failure, and time synchronization using the optional GPS box.

The PW3198 is compliant with the measurement category CAT IV - 600V and can also safely test the incoming lines for both single-phase and three-phase power supplies.

Simply choose the course based on the measurement objective and the necessary configurations will be set automatically.

U Events
Record voltage and frequency and detect errors simultaneously.

Standard Power Quality
Record voltage, current, frequency, and harmonic, and detect errors simultaneously.

Inrush current
Measure the inrush current.

Recording
Record only the TIME PLOT Data but do not detect errors.

EN50160
Perform measurements in accordance with EN50160.

Both low and high voltages can be measured in a single range.

Voltage Measurement Range

- **Line-to-line voltage (3P4W)**
 - 780V
 - 1300V
 - 6000Vpeak

Voltage Frequency Range

- **Harmonic measurement**
- **High-order harmonic measurement**
- **Transient overvoltage detection**

Wide range from DC voltage to 700 kHz

Basic Measurement Accuracy (50/60 Hz)

- **Voltage**: ±0.1% of nominal voltage
- **Current**: ±0.2% rdg. ±0.1% f.s. + Clamp-on sensor accuracy
- **Power**: ±0.2% rdg. ±0.1% f.s. + Clamp-on sensor accuracy

World's highest level of basic measurement accuracy. Extremely accurate voltage measurement without the need to switch ranges.

Transient Overvoltage

Transient overvoltage can also be measured in a range between the maximum 6,000 V and minimum 1 μs (2 MS/s).

High-order Harmonic

The PW3198 is the first power quality analyzer that can measure the high-order harmonic component of up to 80 kHz.

Advanced Features for Safe, Simple, and Accurate Measurements

1. International Standard IEC61000-4-30 Edition 2 Class A

Class A

2. CAT IV-600V Safety

The PW3198 is compliant with the measurement category CAT IV - 600V and can also safely test the incoming lines for both single-phase and three-phase power supplies.

3. Easy to set up - Just select the measurement course and the PW3198 will do the rest

Simply choose the course based on the measurement objective and the necessary configurations will be set automatically.

- **U Events**
- **Standard Power Quality**
- **Inrush current**
- **Recording**
- **EN50160**

4. Highly Accurate, Broadband, Wide Dynamic Range Makes for Reliable Measurements

- **Voltage Measurement Range**
- **Voltage Frequency Range**

Both low and high voltages can be measured in a single range.
The PW3198 can measure all waveforms of power, harmonic, and error events simultaneously. When a problem occurs with the equipment or system on your site, the PW3198 will help you detect the cause of the problem early and solve it quickly. You can depend on the PW3198 to monitor all aspects of your power supplies.

Measure All Parameters at the Same Time

Acquire the Information You Need Quickly by Switching Pages (RMS Value)

Just connect to the measurement line, and the PW3198 will simultaneously measure all parameters, such as power and harmonic. You can then switch pages to view the needed information immediately.

Reliably Detect Power Supply Failures (Event)

To detect power supply failures, measurement does not need to be performed multiple times under different conditions. The PW3198 can always monitor and reliably detect all power supply failures for which detection is enabled.

PW3198 Never Misses the Moment a Power Supply Failure Occurs

- **Transient Overvoltage (Impulse)**
 A transient overvoltage is generated by a lightning strike or a contact fault or closed contact of a circuit breaker and relay, and often causes a steep voltage change and a high voltage peak.

- **Voltage Dip (Voltage Drop)**
 Voltage drops for a short time as a result of large inrush current generated in the load by, for example, a starting motor.

- **Voltage Swell (Voltage Rise)**
 A voltage swell is generated by a lighting strike or a heavily loaded power line being opened or closed, causing the voltage to rise instantaneously.

- **Interruption**
 A large current flows instantaneously at the moment electrical equipment, a motor, or similar devices are powered on.

- **High-order Harmonic**
 Voltage and current waveforms are distorted by noise components generated by a semiconductor control device or the like installed in the power supply of electronic equipment.

- **Unbalance**
 An increase or decrease in the load connected to each phase of the three-phase power supply or an unbalanced operation of equipment and devices causes the load of a particular phase to become heavy so that voltage and current waveforms are distorted, voltage dips, or negative phase sequence voltage is generated.

DMM Display
Display parameters such as voltage, current, power, power factor, and integral power in a single window.

Waveform Display
Display the voltage and current waveforms on channels 1 to 4 one above the other in a single window.

Vector Display
Display the measured value and vector of the voltage and current of each order harmonic.

Harmonic Bar Graph Display
Display the RMS value and phase angle of harmonics from the 0th order to the 50th either in a graph or as numerical values.

4-channel Waveform Display
Display the voltage and current waveforms on channels 1 to 4 individually.
The PW3198 can simultaneously record 8,000 or more parameters, such as voltage, current, power, power factor, frequency, integral power, harmonic, and flicker, at the specified recording interval. The PW3198 never fails to capture the peak because it performs calculations continuously and records the maximum, minimum, and average values within the recording interval.

TIME PLOT Recording of All Parameters

This list records instantaneous waveforms of power supply failures (events), such as a voltage drop or inrush current, along with the time or other information. Events are always monitored, regardless of the recording interval of the TIME PLOT recording.

Event Waveforms

The PW3198 can record up to 1,000 instantaneous waveforms of power supply failures (up to 55,000 when repeat recording is set to ON) while performing TIME PLOT recording.

Event List

This list records instantaneous waveforms of power supply failures (events), such as a voltage drop or inrush current, along with the time or other information. Events are always monitored, regardless of the recording interval of the TIME PLOT recording.

View waveforms during measurement

The PW3198 lets you view the instantaneous waveform (200 ms) of a power supply failure in the window.

Event Waveform

- **RMS value changes over 30 seconds.** When a voltage drop or inrush current occurs, RMS value changes are recorded over 30 seconds simultaneously. This function can also be used to check the voltage drop caused by inrush current generated by the start of the motor.
Use Model 9624-50 PQA-HiVIEW PRO (version 2.00 or later) with a PC to analyze the data collected by the PW3198.

Viewer Function

Display and analyze the data recorded by the PW3198 POWER QUALITY ANALYZER.

Event List Window
Display a list of power supply failures (events) that occurred.

TIME PLOT Window
Display the TIME PLOT (recorded trend) data as well as changes in the voltage/current RMS values, harmonic, and many other parameters.

Event Waveform Window
Display the waveform of an event that occurred, plus the vector, harmonic, DMM, and instantaneous harmonic values.

ITIC Curve Display Window
Analyze the ITIC (CBEEMA) curve (tolerance curve) used in the power quality standards in the United States.

Report Creation Function

Automatically and effortlessly create rich reports for compliance and record management.

Report output items:
- Voltage/current RMS value fluctuation graph
- Harmonic fluctuation graph
- Inter-harmonics fluctuation graph
- Flicker graph
- Integral power graph
- Demand graph
- Total harmonic voltage/current distortion rate list
- EN50160 window (Overview, Harmonic, Measurement Results Category)
- Worst case
- Transient waveform
- Maximum/minimum value list
- All event waveforms/detailed list
- Setup list

CSV Conversion of Measurement Data
Convert data in the range specified in the TIME PLOT window into CSV format and then save for further processing. The 9624-50 can also convert event waveforms into CSV format. Open CSV data using any commercially available spreadsheet software for advanced data management and analysis.

Even Analyze Data Recorded with Models 3196 and 3197 PQAs
Data recorded with the HIOKI 3196 and 3197 Power Quality Analyzers can also be analyzed.

Download Measurement Data via USB/LAN
Data in the SD card inserted in the PW3198 can be downloaded to a PC via USB or LAN.

ENS0160 Display Function
ENS0160 is a power quality standard for the EU. In this mode, evaluate and analyze power quality in accordance with the standard. You can display the Overview, Harmonic, and Measurement Results Category windows.

9624-50 Specifications

<table>
<thead>
<tr>
<th>Delivery media</th>
<th>CD-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating environment</td>
<td>All compatible PC</td>
</tr>
<tr>
<td>DB</td>
<td>Windows XP, Windows Vista (32-bit), Windows 7 (32/64-bit)</td>
</tr>
<tr>
<td>Memory</td>
<td>512 MB or more</td>
</tr>
</tbody>
</table>
Useful Functions for a Wide Variety of Applications

Large Capacity Recording with SD Card
Data is recorded to a large capacity SD card. The data can be transferred to a PC and analyzed using dedicated application software. If your PC is not equipped with an SD card slot, simply connect a USB cable between the PW3198 and the PC. The PC will then recognize the SD card as removable media.

<table>
<thead>
<tr>
<th>Repeat record</th>
<th>Recording period</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Max. 35 days
Reference value: ALL DATA (all items recorded), repeat recording OFF, and TIME PLOT interval 1 minute or longer</td>
</tr>
<tr>
<td>ON</td>
<td>Max. 55 weeks (about 1 year)
Reference value: ALL DATA (all items recorded), repeat recording ON (1 week x 55 times), and TIME PLOT interval 10 minutes or longer</td>
</tr>
</tbody>
</table>

Remote Measurement Using HTTP Server Function
You can use any Internet browser to remotely operate the PW3198, plus download the data stored in the SD card using dedicated software (LAN access required).

GPS Time Synchronization
The PW9005 GPS BOX lets you synchronize the clock on the PW3198 to the UTC standard time. Eliminate time differences between multiple PQAs and correctly analyze measurement data taken by several instruments.

Simultaneously Measure Three-phase Lines and Grounding Wire
Apart from the main measurement line, you can also measure the AC/DC voltage on another line using Channel 4.

- Measure the primary and secondary sides of UPS
- Two-line voltage analysis
- Measure three-phase lines and grounding wire
- Measure neutral lines to detect short circuits
- Measure the input and output of a DC-AC converter for solar power generation

An Assortment of Clamp-on Sensors Covers a Broad Range of Measurements
In addition to current sensors for measuring 100A AC, 500A AC, 1000A AC and 5000A AC rated currents, a 5A AC sensor is also available. In addition, HIOKI’s CLAMP ON LEAK SENSORS enable you to accurately measure for leakage current down to the mA level, while the new CT969X-90 AC/DC Clamp On Sensors further widen applications by supporting DC current testing.

GPS Time Synchronization
The PW3198 uses the new large capacity BATTERY PACK Z1003, enabling continuous measurement for three hours even if a power failure occurs. In addition, a power failure processing function restarts measurement automatically even if the power is cut off completely during measurement.

Backup and Recovery from Power Failure
The PW3198 uses the new large capacity BATTERY PACK Z1003, enabling continuous measurement for three hours even if a power failure occurs. In addition, a power failure processing function restarts measurement automatically even if the power is cut off completely during measurement.

Other Measurement Applications
Flicker measurement
Measure flicker in conformance with IEC 61000-4-15 Ed2.
Phase voltage check for △ connection
Use the Δ-Y and Y-Δ conversion function to measure phase voltage using a virtual neutral point.
400 Hz line measurement
Measure at a power line frequency of 50/60 Hz as well as 400 Hz.
Power Quality Survey Applications

The power supply of the office equipment sometimes shuts down

Survey Objective
The power supply of a printer at the office shuts down even though it is not operated. Equipment other than the printer can also sometimes perform a reset unexpectedly.

Measurement Method
Setup is very easy. Just install the PW3198 on the site, and measure the voltage, current, and power. To troubleshoot, just select the clamp-on sensor and wiring, and then select the "U Events" course.

Analysis Report
No failure occurred during the measurement period, but a periodic voltage drop was confirmed. The voltage drop may have been caused by the periodic start and operation of the electrical equipment connected to the power supply line. Equipment, such as a laser printer, copier, and electrical heater, may start themselves periodically due to residual heat. An instantaneous voltage drop is likely to have been caused by inrush current from equipment that consumes a large amount of power.

Medical equipment malfunctions

Survey Objective
Replacing the equipment with a new one by the service provider did not improve the malfunction. A survey of the power supply was required to clarify the cause.

Measurement Method
Select the "U Events" course in the PW3198 in the same way as with the office equipment example.

Analysis Report
It was determined that a voltage dip (voltage drop) occurred and impacted the operation of the equipment. If a voltage dip occurs every day on a regular basis, the probable cause is the start of a large air-conditioning unit, pump, heater, or similar equipment.

Surveying a Solar Power Generation System

Survey Objective
• Maintain a solar power generation system and check its operation (verify the power quality)
• Troubleshoot (impact on the peripheral equipment, operation shutdown, etc.)

Measurement Method
Set up the PW3198 on the site and measure the voltage, current, and power. To survey the power quality, select the "Standard power quality measurement" course in the PRESETS menu. To measure the DC voltage, connect channel 4 to the primary side of the solar panel.

Analysis Report
It was determined that a voltage dip (voltage drop) occurred and impacted the operation of the equipment. If a voltage dip occurs every day on a regular basis, the probable cause is the start of a large air-conditioning unit, pump, heater, or similar equipment.

No failure occurred during the measurement period, but a periodic voltage drop was confirmed. The voltage drop may have been caused by the periodic start and operation of the electrical equipment connected to the power supply line. Equipment, such as a laser printer, copier, and electrical heater, may start themselves periodically due to residual heat. An instantaneous voltage drop is likely to have been caused by inrush current from equipment that consumes a large amount of power.

Example of Voltage Waveforms at the Time Voltage Dip Occurs

Analysis Report
All parameters can be recorded simultaneously with a single measurement.
• Identify changes in the output voltage of the power conditioner
• Presence or absence of the occurrence of a transient overvoltage
• Frequency fluctuation important for system interconnection
• Identify changes in the harmonic voltage and current included in the output
• Power (AC), integral power (AC), etc.
PW3198 Specifications

Measurement items

<table>
<thead>
<tr>
<th>Voltage measurement items (TIME PLOT Recording)</th>
<th>RMS voltage</th>
<th>Waveform voltage peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Frequency (1 cycle, 10-sec)</td>
<td></td>
</tr>
<tr>
<td>DC voltage</td>
<td>IEC Flicker (Pst, Pll)</td>
<td></td>
</tr>
<tr>
<td>Harmonic voltage (0 to 50th order)</td>
<td>Harmonic voltage phase angle (0 to 50th)</td>
<td></td>
</tr>
<tr>
<td>Inter-harmonic voltage (0.5 to 49.5th)</td>
<td>High order harmonic voltage component</td>
<td></td>
</tr>
<tr>
<td>Total harmonic voltage distortion factor</td>
<td>Voltage Unbalance factor (Zero-phase / Negative-phase)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current measurement items (TIME PLOT Recording)</th>
<th>RMS current</th>
<th>High order harmonic current component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform current peak</td>
<td>Total harmonic current distortion factor</td>
<td></td>
</tr>
<tr>
<td>Harmonic current phase angle (0 to 50th)</td>
<td>Current Unbalance factor (Zero-phase / Negative-phase)</td>
<td></td>
</tr>
<tr>
<td>Harmonic current (0 to 50th)</td>
<td>K factor</td>
<td></td>
</tr>
<tr>
<td>Inter-harmonic current (0.5 to 49.5th)</td>
<td>DC current (when using compatible sensor)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power measurement items (TIME PLOT Recording)</th>
<th>Active power</th>
<th>Harmonic voltage-current phase angle (0 to 50th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive power</td>
<td>Reactive energy</td>
<td></td>
</tr>
<tr>
<td>Apparent power</td>
<td>Active energy</td>
<td></td>
</tr>
<tr>
<td>Power factor</td>
<td>Reactive energy</td>
<td></td>
</tr>
</tbody>
</table>

EVENT measurement items (EVENT Recording)

<table>
<thead>
<tr>
<th>EVENT measurement items (EVENT Recording)</th>
<th>Voltage swell</th>
<th>Frequency fluctuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage dip</td>
<td>Voltage waveform comparison</td>
<td></td>
</tr>
<tr>
<td>Interruption</td>
<td>Timer</td>
<td></td>
</tr>
<tr>
<td>Inrush current</td>
<td>External events</td>
<td></td>
</tr>
</tbody>
</table>

Power measurement items

<table>
<thead>
<tr>
<th>EVENT detection using upper and lower thresholds available with other voltage, current and power measurement parameters (excluding Integrated power, Unbalance, Inter-harmonic, Harmonic phase angle, IEC Flicker)</th>
</tr>
</thead>
</table>

Input specifications

Measurement circuits

- Single-phase 2-wire (1P2W), single-phase 3-wire (1P3W), three-phase 3-wire (3P3W2M, 3P4W2.5E) or three-phase 4-wire (3P4W) plus one extra input channel (must be synchronized to reference channel during AC/DC measurement)

Fundamental frequency of measurement circuit

- 50Hz, 60Hz, 400Hz

Input channels

- Voltage : 4 channels (U1 to U4), Current : 4 channels (I1 to I4)

Input methods

- Voltage : isolated and differential inputs (channels not isolated between U1, U2 and U3; channels isolated between U1 to U3 and U4)
- Current : Insulated clamp-on sensors (voltage output)

Input resistance

- Voltage : 4MΩ ±80kΩ (differential inputs)
- Current : 100kΩ ±10kΩ

Compatible clamp sensors

- Units with t.s. = 0.5V output at rated current input (t.s. = 0.5V recommended)
- Units with rate of 0.1mA/A, 1mA/A, 10mA/A, or 100mA/A

Measurement ranges

- (Ch1 to Ch4 can be configured the same way; only Ch4 can be configured separately)

PW3198 current ranges

<table>
<thead>
<tr>
<th>Current sensor</th>
<th>Current range setting (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9650</td>
<td>100.00 / 50.00</td>
</tr>
<tr>
<td>9651</td>
<td>500.00 / 50.00</td>
</tr>
<tr>
<td>9667 (500A)</td>
<td>500.00 / 50.00</td>
</tr>
<tr>
<td>9667 (5kA)</td>
<td>500.00 / 50.00</td>
</tr>
<tr>
<td>9696</td>
<td>500.00 / 50.00</td>
</tr>
<tr>
<td>9697</td>
<td>500.00 / 50.00</td>
</tr>
<tr>
<td>9699</td>
<td>500.00 / 100.00</td>
</tr>
<tr>
<td>9694</td>
<td>50.00 / 50.00</td>
</tr>
<tr>
<td>9696-02</td>
<td>50.00 / 50.00</td>
</tr>
<tr>
<td>9695-03</td>
<td>100.00 / 10.00</td>
</tr>
</tbody>
</table>

PW3198 Power ranges

- (automatically configured based on current range)

<table>
<thead>
<tr>
<th>Current range setting</th>
<th>Power range (W / VA / var)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0000 kA</td>
<td>5.0000W / 50.000VA</td>
</tr>
<tr>
<td>1.0000 kA</td>
<td>600.00kW / 600.00kVA</td>
</tr>
<tr>
<td>500.00 A</td>
<td>50.000W / 50.000VA</td>
</tr>
<tr>
<td>100.00 A</td>
<td>600.00W / 600.00VA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current range setting</th>
<th>Power range (W / VA / var)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000 A</td>
<td>30.00kW</td>
</tr>
<tr>
<td>10.000 A</td>
<td>60.00kW</td>
</tr>
<tr>
<td>5.0000 A</td>
<td>3.00kW</td>
</tr>
</tbody>
</table>

Basic specifications

- Maximum recording period: 55 weeks (with repeated recording set to [1 Week], 55 iterations) 55 days (with repeated recording set to [11 Day], 55 iterations) 35 days (with repeated recording set to [OFF])
- Maximum recordable events: 55,000 events (with repeated recording on) 1,000 events (with repeated recording off)

TIME PLOT data settings

- **TIME PLOT interval (MAX/ MIN/ AVG) within each interval recorded**
 - 1s, 3s, 5s, 30s, 1m, 5m, 10m, 15m, 30m, 1h, 2h, 150 cycle (at 50Hz), 180 cycle (at 60Hz), 1200 cycle (at 400Hz)
- **Screen copy interval (screen shot at each interval saved to SD card)**
 - OFF, 5m, 10m, 30m, 1h, 2h
- **Timer EVENT interval (200ms instantaneous waveform saved at each interval)**
 - OFF, 5m, 10m, 30m, 1h, 2h
- **Waveform current peak**
 - waveform measurement ranges: 6.0000kV peak

Recording items settings

- **Power (Small)**: Recording basic parameters
- **P&Harm (Normal)**: Recording basic parameters and harmonics
- **All Data (Full)**: Recording P&Harm items and inter-harmonics

Memory data capacity

- Max. 32 GB with SD Card; only use of the HIOKI 2GB SD Memory Card Model Z4001 is guaranteed by HIOKI. Contact your HIOKI representative for special order larger capacity cards that offer the HIOKI guarantee.
Environment and safety specifications

Operating environment Indoors, altitude up to 3000 m (measurement category is lowered to 600 m CAT III when above 2000 m), Pollution degree 2

Storage temperature and humidity -20 to 50°C (-4 to 122°F) 80% RH or less (non-condensing)

Operating temperature and humidity 0 to 50°C (32 to 122°F) 80% RH or less (non-condensing)

Dust and water resistance IP30 (EN60529)

Max. input voltage Voltage input section 1000 VAC, DC±600 V, max. peak voltage ±6000 Vpeak

Max. input current Section 3VAC, DC±4.24V

Max. input voltage to earth Voltage input terminal 600 V (Measurement Categories IV, anticipated transient overvoltage 8000 V)

Dissipative strength 8.88 kVrms (8/20μs, 1 mA sense current): Between voltage measurement terminals (U1 to U3) and voltage measurement terminals (U4) 4.30 kVrms (1 mA@50/60 Hz, 1 μA sense current): Between voltage input terminal (U1 to U3) and current input terminals/interfaces Between voltage (U4) and current measurement terminals, and interfaces

Applicable standards
- Safety EN61010
- EMC EN61326 Class A, EN61000-3-2, EN61000-3-3
Measurement Specifications

TIME PLOT

- The MAX/MIN/AVG of each recording interval for each parameter are recorded.
- When a power anomaly occurs, approx. 200ms instantaneous waveform is recorded.
- When a transient overvoltage is detected, the 2ms instantaneous waveforms before and after the occurrence (total 4ms) are recorded.
- The RMS fluctuation 0.5s before and 29.5s after an event has occurred are recorded.
- When a high order harmonic event occurs, the 40ms instantaneous waveform is recorded.

TRANSIENT

- Display items: For single transient incidents and continuous transient incidents
 - Transient voltage value, Transient width
 - For continuous transient incidents
 - Transient period (Period from transient IN to transient OUT)
 - Max. transient voltage value (Max. peak value during the period)
 - Transient count during period
- Measurement method: Detected from waveform obtained by eliminating the fundamental component (50/60/400 Hz) from the sampled waveform
- Sampling frequency: 2MHz
- Measurement range, resolution: ±6.0000kV/peak, 0.0001kV
- Measurement bandwidth: 5 kHz (-3dB) to 700 kHz (-3dB)
- Min. detection width: 0.5 μs
- Measurement accuracy: ±0.0% rdg.±1.0% f.s.
- RMS voltage/ RMS current refreshed each half-cycle
 - Measurement method: RMS voltage refreshed each half-cycle
 - RMS voltage refreshed each half-cycle: True RMS type, RMS voltage values are calculated using sample data for 1 waveform derived by overlapping the voltage waveform every half-cycle
 - RMS current refreshed each half-cycle: RMS current is calculated using current waveform data sampled every half-cycle
 - Sampling frequency: 2MHz
 - Measurement range, resolution: RMS voltage refreshed each half-cycle: ±0.0% of nominal voltage (With 1.666% f.s. to 110% f.s. input and a nominal input voltage of at least 100 V)
 - RMS current refreshed each half-cycle: ±0.3% rdg.±0.6% f.s. + clamp-on sensor accuracy
- Swell/ Dip/ Interruption
 - Display item: Swell height, Swell duration
 - Dip: Dip depth, Dip duration
 - Interruption: Interruption depth, Interruption duration
 - Measurement method: Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the positive direction
 - Swell: A swell is detected when the RMS voltage refreshed each half-cycle exceeds the threshold in the negative direction
 - Range and accuracy: See RMS voltage refreshed each half-cycle
- Inrush current
 - Display item: Maximum current of RMS current refreshed each 1/2 cycle
 - Measurement method: Detected when the RMS current refreshed each 1/2 cycle exceeds the threshold in a positive direction
 - Range and accuracy: See RMS current refreshed each half-cycle
- RMS voltage, RMS current
 - Display items: RMS voltage: RMS voltage for each channel and AVG (average) RMS voltage for multiple channels
 - RMS current: RMS current for each channel and AVG (average) RMS current for multiple channels
 - Measurement method: AC+DC True RMS type (Current DC value: with release of new clamp-on sensor)
 - RMS value calculated from 10 cycles (50 Hz) or 12 cycles (60 Hz)
 - Sampling frequency: 2MHz
 - Measurement range, resolution: RMS voltage: ±0.1% of nominal voltage (With 1.666% f.s. to 110% f.s. input and a nominal input voltage of at least 100 V)
 - RMS current: ±0.2% rdg.±0.08% f.s. (With input outside the range of 1.666% f.s. to 110% f.s. or a nominal input voltage of less than 100 V)
 - Measurement accuracy: ±0.2% rdg.±0.08% f.s. + clamp-on sensor accuracy
- Voltage waveform peak/ Current waveform peak
 - Display item: Positive peak value and negative peak value
 - Measurement method: Measured every 10 cycles (50 Hz) or 12 cycles (60 Hz) maximum and minimum points sampled during approx. 200 ms aggregation
 - Sampling frequency: 2MHz
 - Measurement range, resolution: Voltage waveform peak: ±1200.0 V peak, 0.1V
 - Current waveform peak: The quadruple of RMS current measurement range (Based on clamp-on sensor in use; See Input specifications)
- Voltage waveform comparison
 - Display item: Event detection only
 - Measurement method: A judgment area is automatically generated from the previous 200 ms aggregation waveform, and events are generated based on a comparison with the judgment waveform. Waveform judgments are performed once for each 200 ms aggregation.
 - Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)
 - No. of window points: 4096 points synchronized with harmonic calculations
- Frequency cycle
 - Measurement method: Calculated as the reciprocal of the accumulated whole-cycle time during one U1 (reference channel) cycle
 - Measurement range, resolution: 70.0000Hz, 0.001Hz
 - Measurement bandwidth: 40.000 to 70.0000Hz
 - Measurement accuracy: ±0.200 Hz or less (for input from 10% f.s. to 110% f.s.)
- Frequency
 - Measurement method: Calculated as the reciprocal of the accumulated whole-cycle time during approx. 200ms period of 10 or 12 U1 (reference channel) cycles
 - Measurement range, resolution: 70.0000Hz, 0.001Hz
 - Measurement bandwidth: 40.000 to 70.0000Hz
 - Measurement accuracy: ±0.020 Hz or less
- 10-sec frequency
 - Measurement method: Calculated as the reciprocal of the accumulated whole-cycle time during the specified 10s period for U1 (reference channel) as per IEC61000-4-30
 - Measurement range, resolution: 70.0000Hz, 0.001Hz
 - Measurement bandwidth: 40.000 to 70.0000Hz
 - Measurement accuracy: ±0.010 Hz or less
Voltage DC value (ch4 only)

Measurement method
Average value during approx. 20ms aggregation synchronized with the reference channel (CH4 only)

Sampling frequency
20kHz

Measurement range, resolution
600.00V, 0.01V

Measurement accuracy
±0.3%rdg, ±0.08%f.s.

Current DC value (ch4 only)

Measurement method
Average value during approx. 200ms aggregation synchronized to reference channel (CH4 only)

Sampling frequency
20kHz

Measurement range, resolution
Based on clamp-on sensor in use (with release of new clamp-on sensor)

Measurement accuracy
±0.5% rdg, ±0.5%f.s. + clamp-on sensor accuracy

Active power/ Apparent power/ Reactive power

Measurement method

- **Power factor**
 Calculated from RMS voltage U, RMS current I, and active power P

- **Displacement power factor**
 Calculated from the phase difference between the fundamental voltage wave and the fundamental current wave

Display items

- **Active power**
 Active power for each channel and sum value for multiple channels
- **Apparent power**
 Apparent power of each channel and its sum for multiple channels
- **Reactive power**
 Reactive power of each channel and its sum for multiple channels

Sampling frequency
20kHz

Measurement range, resolution
Depends on the voltage × current range combination; see Input specifications

Measurement accuracy

- **Active power**
 ±0.2% rdg, ±0.1%f.s. + clamp-on sensor accuracy
- **Apparent power**
 ±1 dgt. for calculations derived from the various measurement values
- **Reactive power**
 ±1 dgt. for calculations derived from the various measurement values

Active energy /Reactive energy

Measurement method

- **Active energy**
 WP+ (consumption), WP- (regeneration); Sum of multiple channels

Display items

- **Active energy**
 Active power measurement accuracy ±10 dgt.

Sampling frequency
20kHz

Measurement range, resolution

- **Active energy**
 Depends on the voltage × current range combination; see Input specifications

Measurement accuracy

- **Active energy**
 Active power measurement accuracy ±10 dgt.

Power factor /Displacement power factor

Measurement method

- **Power factor**
 Calculated from RMS voltage U, RMS current I, and active power P

Display items

- **Displacement power factor**
 Lag phase (LAG: current lags voltage) and Lead phase (LEAD: current leads voltage)

Sampling frequency
20kHz

Measurement range, resolution
Depends on the voltage × current range combination; see Input specifications

Measurement accuracy

- **Displacement power factor**
 ±0.15% (lead) to 0.0000 to 1.0000 (lag)

Voltage unbalance factor/ Current unbalance factor (negative-phase, zero-phase)

Measurement method

- **Voltage unbalance factor**
 Negative-phase unbalance factor, zero-phase unbalance factor

Display items

- **Voltage unbalance factor**
 Component is V and unbalance factor is 0.00% to 100.00%

Sampling frequency
20kHz

Measurement range, resolution

- **Voltage unbalance factor**
 Depends on the voltage × current range combination; see Input specifications

Measurement accuracy

- **Voltage unbalance factor**
 ±0.15%

High-order harmonic voltage component/ High-order harmonic current component

Measurement method

- **High-order harmonic voltage component**
 The waveform obtained by eliminating the fundamental component is calculated using the true RMS method during 10 cycles (50 Hz) or 12 cycles (60 Hz) of the fundamental wave

Display items

- **High-order harmonic voltage component**
 For single incidents and continuous transient incidents
- **High-order harmonic current component**
 For continuous incidents

Sampling frequency
20kHz

Measurement range, resolution

- **High-order harmonic voltage component**
 600.00V, 0.01V
- **High-order harmonic current component**
 Based on clamp-on sensor in use; See Input specifications

Measurement accuracy

- **High-order harmonic voltage component**
 ±10% rdg, ±0.1%f.s.
- **High-order harmonic current component**
 ±10% rdg, ±0.2%f.s. + clamp-on sensor accuracy

Harmonic voltage/ Harmonic current (including fundamental component)

Display items

- **Select either RMS or content percentage; From 0 to 50th order**

Measurement method
Uses IEC61000-4-7:2002.

Comparison window width
10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points
4096 points synchronized with harmonic calculations

Measurement range, resolution

- **Harmonic voltage**
 600.00V, 0.01V
- **Harmonic current**
 Based on clamp-on sensor in use; see Input specifications

Measurement accuracy

- **Harmonic voltage**
 See measurement accuracy with a fundamental wave of 50/60 Hz
- **Harmonic current**
 When using an AC-only clamp sensor, 0th order is not specified for current and power
Total harmonic voltage/ Total harmonic current distortion factor

Display items: THD-F (total harmonic distortion factor for the fundamental wave)
THD-R (total harmonic distortion factor for the total harmonic including the fundamental wave)

Measurement method: Based on IEC 61000-4-7:2002; Max. order: 50th

Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points: 4096 points synchronized with harmonic calculations

Measurement range, resolution: 0.00 to 100.00%(Voltage), 0.00 to 500.00%(Current)

Measurement accuracy: —

Harmonic power (including fundamental component)

Display item: Select either RMS or content percentage; From 0 to 50th order

Measurement method: Uses IEC 61000-4-7:2002

Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points: 4096 points synchronized with harmonic calculations

Measurement range, resolution: Depends on the voltage × current range combination; See input specifications

Measurement accuracy: See measurement accuracy with a fundamental wave of 50/60 Hz (When using an AC-only clamp sensor, order 0 is not specified for current and power)

Harmonic voltage phase angle/ Harmonic current phase angle (including fundamental component)

Display item: Harmonic phase angle components for whole orders

Measurement method: Uses IEC 61000-4-7:2002

Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points: 4096 points synchronized with harmonic calculations

Measurement range, resolution: -180.00° to 0.00° to 180.00°

Measurement accuracy: —

Harmonic voltage-current phase angle (including fundamental component)

Display item: Indicates the difference between the harmonic voltage phase angle and the harmonic current phase angle. Harmonic voltage-current phase angle for each channel and sum (total) value for multiple channels

Measurement method: Uses IEC 61000-4-7:2002

Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points: 4096 points synchronized with harmonic calculations

Measurement range, resolution: -180.00° to 0.00° to 180.00°

Measurement accuracy: —

Inter-harmonic voltage and inter-harmonic current

Display item: Select either RMS or content percentage; From 0 to 50th order

Measurement method: Uses IEC 61000-4-7:2002

Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points: 4096 points synchronized with harmonic calculations

Measurement range, resolution: 0.00 to 500.00

Measurement accuracy: —

K Factor (multiplication factor)

Measurement method: Calculated using the harmonic RMS current of the 2nd to 50th orders

Comparison window width: 10 cycles (50 Hz), 12 cycles (60 Hz)

No. of window points: 4096 points synchronized with harmonic calculations

Measurement range, resolution: 0.00 to 500.00

Measurement accuracy: —

Instantaneous flicker

Measurement method: As per IEC61000-4-15

User-selectable from 230 V lamp/120 V lamp (where Pst and Plt are selected for flicker measurement)/4 types of Ed2 filter (230 V lamp 50/60 Hz, 120 V lamp 60/50 Hz)

Measurement range, resolution: 50/60 Hz

Measurement accuracy: ±0.01 V

ΔV10 Flicker

Display items: ΔV10 measured at one minute intervals, average value for one hour, maximum value for one hour, fourth largest value for one hour, total (within the measurement interval) maximum value

Measurement method: Calculated values are subject to 100 V conversion following gap-less measurement once each minute

Measurement range, resolution: ±0.00 to 99.999V

Measurement accuracy: ±0.1% rdg.±0.01 V (with a fundamental wave of 100 Vrms [50/60 Hz], a fluctuation voltage of 1 Vrms, and a fluctuation frequency of 10 Hz)

Threshold: 0.00 to 9.999V alarm output is generated when the reading for each minute is compared to the threshold and found to be greater

IEC Flicker

Display items: Short interval flicker Pst, long interval flicker Plt

Pst is calculated after 10 minutes of continuous measurement and Plt after 2 hours of continuous measurement

Measurement range: 0.001 to 100.00 P.U. broken into 1,024 segments with a logarithm

Measurement accuracy: Pst ±5% rdg. (Specified within range 0.1000 to 20.000 using IEC 61000-4-15 Ed1.1 and IEC 61000-4-15 Ed2 Class F1 performance test.)
Clamp-on sensor

<table>
<thead>
<tr>
<th>Measure</th>
<th>CLAMP ON SENSOR 9694</th>
<th>CLAMP ON SENSOR 9660</th>
<th>CLAMP ON SENSOR 9661</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary current rating</td>
<td>5A AC</td>
<td>100A AC</td>
<td>500A AC</td>
</tr>
<tr>
<td>Output voltage</td>
<td>10mV/A AC</td>
<td>AC 1mV/A AC</td>
<td>AC 1mV/A AC</td>
</tr>
<tr>
<td>Measurement range</td>
<td>See input specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude accuracy</td>
<td>±0.3%rdg. ±0.02%f.s.</td>
<td>±0.3%rdg. ±0.02%f.s.</td>
<td>±0.3%rdg. ±0.01%f.s.</td>
</tr>
<tr>
<td>Phase accuracy</td>
<td>±2° or less</td>
<td>±1° or less</td>
<td>±0.5° or less</td>
</tr>
<tr>
<td>Maximum allowable input</td>
<td>50 A continuous</td>
<td>130 A continuous</td>
<td>550 A continuous</td>
</tr>
<tr>
<td>Maximum rated voltage to earth</td>
<td>CAT III 300Vrms</td>
<td></td>
<td>CAT III 600 Vrms</td>
</tr>
<tr>
<td>Frequency characteristics</td>
<td>±1.0% or less for 66Hz to 5kHz (deviation from specified accuracy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cord length</td>
<td>3m (9.84ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurable conductor diameter</td>
<td>Max. φ15mm (0.59")</td>
<td>Max. φ46mm (1.81")</td>
<td></td>
</tr>
<tr>
<td>Dimensions, Mass</td>
<td>48W (1.81") × 139H (5.31") × 21D (0.83") mm, 230g (8.1 oz.)</td>
<td>78W (3.07") × 152H (5.98") × 42D (1.65") mm, 380g (13.4 oz.)</td>
<td></td>
</tr>
</tbody>
</table>

Clamp-on sensor

<table>
<thead>
<tr>
<th>Measure</th>
<th>CLAMP ON SENSOR 9695</th>
<th>FLEXIBLE CLAMP ON SENSOR CT9667</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary current rating</td>
<td>1000 A AC</td>
<td>5000A AC</td>
</tr>
<tr>
<td>Output voltage</td>
<td>0.5mV/A AC</td>
<td>500 mV AC f.s.</td>
</tr>
<tr>
<td>Measurement range</td>
<td>See input specifications</td>
<td></td>
</tr>
<tr>
<td>Amplitude accuracy</td>
<td>±1.0%rdg. ±0.01%f.s.</td>
<td>±2.0%rdg. ±0.3%f.s.</td>
</tr>
<tr>
<td>Phase accuracy</td>
<td>±1° or less</td>
<td>±1° or less</td>
</tr>
<tr>
<td>Maximum allowable input</td>
<td>1000 A continuous</td>
<td>1000 A continuous</td>
</tr>
<tr>
<td>Maximum rated voltage to earth</td>
<td>CAT III 600 Vrms</td>
<td>CAT III 600 Vrms</td>
</tr>
<tr>
<td>Frequency characteristics</td>
<td>Within ±2% at 40Hz to 5kHz (deviation from accuracy)</td>
<td>±3dB or less for 10 Hz to 20kHz (within ±3dB)</td>
</tr>
<tr>
<td>Cord length</td>
<td>3m (9.84ft)</td>
<td>Sensor to circuit: 2m (6.56ft)</td>
</tr>
<tr>
<td>Measurable conductor diameter</td>
<td>Max. φ55 mm (2.17") × 80 (3.15") × 20 (0.79") mm busbar</td>
<td>Max. φ254mm (10")</td>
</tr>
<tr>
<td>Dimensions, Mass</td>
<td>99.5W (3.92") × 188H (7.4") × 42D (1.65") mm, 990g (20.8 oz.)</td>
<td>Circuit box: 35W (1.38") × 120.5H (4.74") × 34D (1.34") mm, 140 g (4.9 oz.)</td>
</tr>
<tr>
<td>Power supply</td>
<td>—</td>
<td>LR6 alkaline battery x2, AC Adapter (option) or external 5 to 15 V DC power supply</td>
</tr>
<tr>
<td>Options (sold separately)</td>
<td>AC ADAPTER 9445-02 (universal 100 to 240VAC, 9V/1A output/for USA)</td>
<td>AC ADAPTER 9445-03 (universal 100 to 240VAC, 9V/1A output/for Europe)</td>
</tr>
</tbody>
</table>

Clamp-on sensor

<table>
<thead>
<tr>
<th>Measure</th>
<th>CLAMP ON SENSOR 9695-02</th>
<th>CLAMP ON SENSOR 9695-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary current rating</td>
<td>50A AC</td>
<td>100A AC</td>
</tr>
<tr>
<td>Output voltage</td>
<td>10mV/A AC</td>
<td>1mV/A AC</td>
</tr>
<tr>
<td>Measurement range</td>
<td>See input specifications</td>
<td></td>
</tr>
<tr>
<td>Amplitude accuracy</td>
<td>±0.3%rdg. ±0.02%f.s.</td>
<td>±0.3%rdg. ±0.02%f.s.</td>
</tr>
<tr>
<td>Phase accuracy</td>
<td>Within ±2°</td>
<td>Within ±1°</td>
</tr>
<tr>
<td>Maximum allowable input</td>
<td>130 A continuous</td>
<td>130 A continuous</td>
</tr>
<tr>
<td>Maximum rated voltage to earth</td>
<td>CAT III 300Vrms (insulated conductor)</td>
<td></td>
</tr>
<tr>
<td>Frequency characteristics</td>
<td>Within ±2% at 40Hz to 5kHz (deviation from accuracy)</td>
<td></td>
</tr>
<tr>
<td>Cord length</td>
<td>CONNECTION CORD 9219 (sold separately) is required.</td>
<td></td>
</tr>
<tr>
<td>Measurable conductor diameter</td>
<td>Max. φ15mm (0.59")</td>
<td></td>
</tr>
<tr>
<td>Dimensions, Mass</td>
<td>51W (2.01") × 58H (2.28") × 19D (0.75") mm, 50g (1.8 oz.)</td>
<td></td>
</tr>
<tr>
<td>Options (sold separately)</td>
<td>CONNECTION CORD 9219 (Cord length: 3m (9.84ft))</td>
<td></td>
</tr>
</tbody>
</table>

*Note: CONNECTION CORD 9219 (sold separately) is required.

* : 45 to 66Hz
Clamp-on AC/DC sensor

CLAMP ON SENSOR CT9691-90 (CT9691 bundled with the CT6590) | CLAMP ON SENSOR CT9692-90 (CT9692 bundled with the CT6590) | CLAMP ON SENSOR CT9693-90 (CT9693 bundled with the CT6590)

Appearance

Includes
- CT9691 x 1, CT6590 x 1
- CT9692 x 1, CT6590 x 1
- CT9693 x 1, CT6590 x 1

CT9691, CT9692, CT9693 (Clamp sensor specifications)

<table>
<thead>
<tr>
<th>Component</th>
<th>CT9691</th>
<th>CT9692</th>
<th>CT9693</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary current rating</td>
<td>100A AC/DC</td>
<td>200A AC/DC</td>
<td>2000A AC/DC</td>
</tr>
<tr>
<td>Maximum input range (RMS value)</td>
<td>100Ams continuous</td>
<td>200Ams continuous</td>
<td>2000Ams continuous</td>
</tr>
<tr>
<td>Frequency band</td>
<td>DC to 10 kHz (-3dB)</td>
<td>DC to 10 kHz (-3dB)</td>
<td>DC to 15 kHz (-3dB)</td>
</tr>
<tr>
<td>Cord length</td>
<td>2m (6.5 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurable conductor diameter</td>
<td>35 mm (1.38") or less</td>
<td>33 mm (1.3") or less</td>
<td>55 mm (2.17") or less</td>
</tr>
<tr>
<td>Dimensions, Mass</td>
<td>53W x 129H x (5.08") x 18D (1.3") mm, 230g (8.1 oz.)</td>
<td>62W x 167H x (6.5") x 35D (2.1") mm, 410g (14.5 oz.)</td>
<td>62W x 196H x (7.7") x 35D (2.1") mm, 500g (17.6 oz.)</td>
</tr>
</tbody>
</table>

CT6590 (SENSOR UNIT) specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>CT6590</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor combination Output rate</td>
<td>H range : 1mV/A L range : 10mV/A</td>
</tr>
<tr>
<td>Sensor combination measurement range</td>
<td>See input specifications</td>
</tr>
<tr>
<td>Sensor combination accuracy (Continuous input)</td>
<td>±1.5%rdg.+0.1%f.s. (DC ≤ f ≤ 66 Hz)</td>
</tr>
<tr>
<td>Sensor combination accuracy (Phase)</td>
<td>±2deg. (DC ≤ f ≤ 66 Hz)</td>
</tr>
<tr>
<td>Cord length</td>
<td>1m (3.3ft)</td>
</tr>
<tr>
<td>Dimensions, Mass</td>
<td>36W x 120H x (4.2") x 34D (1.3") mm (excluding protruding parts), 165g (5.8 oz.) (including batteries)</td>
</tr>
<tr>
<td>Power supply</td>
<td>LIR6 alkaline battery x2, optional AC adapter, or 5 V to 15 VDC external power</td>
</tr>
<tr>
<td>Options (sold separately)</td>
<td>AC ADAPTER 9445-02 (universal 100 to 240VAC, 9V/1A output/for USA)</td>
</tr>
</tbody>
</table>

*: Derating according to frequency

Clamp-on leak sensor

CLAMP ON LEAK SENSOR 9657-10 | CLAMP ON LEAK SENSOR 9675

Appearance

Primary current rating
- 10A AC (Up to 5A on Model PW3198)

Output voltage
- 100 mW/VA AC

Measurement range
- See input specifications (Cannot be used to measure power)

Amplitude accuracy
- ±1.0%rdg.+0.05%f.s. *
- ±1.0%rdg.+0.005%f.s. *

Residual current characteristics
- Max. 5mA (in 100A go and return electric wire)
- Max. 1mA (in 10A go and return electric wire)

Effect of external magnetic fields
- 400A AC/m corresponds to 5mA, Max. 7.5mA

Maximum rated voltage to earth
- CAT III 300Vrms (insulated conductor)

Cord length
- 3m (9.84ft)

Measurable conductor diameter
- Max. φ40 mm (1.57")
- Max. φ30 mm (1.18")

Dimensions, Mass
- 74W x 145H x 13D (2.9") x 380g (13.4oz.)
- 60W x 137H x 11D (2.9") x 165g (5.8oz.)

*: 45 to 66Hz
Options

Current measurement

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9604</td>
<td>5A AC, φ15mm(0.59")</td>
</tr>
<tr>
<td>9659</td>
<td>100A AC, φ55mm(2.17"), 800(3.15")x260(10.2")mm busbar</td>
</tr>
<tr>
<td>CT-667</td>
<td>5000A AC, 5000A AC (selectable), φ25mm (1.0") Power supply: LR6 alkaline battery or AC ADAPTER 9445-02/03 (sold separately)</td>
</tr>
<tr>
<td>9667</td>
<td>100A AC, φ46mm(1.81")</td>
</tr>
</tbody>
</table>

Voltage measurement

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9669</td>
<td>100A AC, φ55mm(2.17"), 800(3.15")x260(10.2")mm busbar</td>
</tr>
<tr>
<td>CT-9667</td>
<td>5000A AC, 5000A AC (selectable), φ25mm (1.0") Power supply: LR6 alkaline battery or AC ADAPTER 9445-02/03 (sold separately)</td>
</tr>
</tbody>
</table>

Current measurement

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9660</td>
<td>100A AC, φ55mm(2.17"), 800(3.15")x260(10.2")mm busbar</td>
</tr>
<tr>
<td>CT-667</td>
<td>5000A AC, 5000A AC (selectable), φ25mm (1.0") Power supply: LR6 alkaline battery or AC ADAPTER 9445-02/03 (sold separately)</td>
</tr>
</tbody>
</table>

Clock synchronization

- **GPS BOX PW9005**
 - To synchronize the PW3198 clock, Accessory: Connection cable set

Voltage measurement

- **WIRING ADAPTER PW9000** For 3P3W WIRING
 - Soft case: 450W × 345W × 210Dmm (17.7"W × 13.6"H × 8.3"D)

Application software

- **POQA-HiVIEW PRO 9624-50**
 - Use Model PW9001 with the PW3198 for data analysis.

Notes

- **IMPORTANT**
 - Use only the SD Card Z4001 sold by HIOKI.

Combination example:

For three-phase 4-wire circuits containing leak current:

- **PW3198-90**
- **9661 × 3**
- **9675**
- **PW9001**
- **C1001**

POWER QUALITY ANALYZER PW3198

<table>
<thead>
<tr>
<th>PW3198-90</th>
<th>CLAMP ON SENSOR (500A)</th>
<th>CLAMP ON DC SENSORS (Load current, AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW9001</td>
<td>9661 × 3</td>
<td>9675</td>
</tr>
<tr>
<td>C1001</td>
<td>PW3198 set</td>
<td>PW9001</td>
</tr>
</tbody>
</table>

POWER QUALITY ANALYZER PW3198

VOLTAGE CORD L1000

AC ADAPTER Z1002

BATTERY PACK Z1003

SD MEMORY CARD 2GB Z4001

POQA-HiVIEW PRO 9624-50

DISTRIBUTED BY

Signal Test, Inc.

1529 Santiago Ridge Way
San Diego, CA 92154
Tel. 1-619-575-1577 USA
www.SignalTestInc.com
Sales@SignalTestInc.com

Headquarters:

81 Koizumi, Ueda, Nagano, 386-1192, Japan
TEL +81-268-28-0562 FAX +81-268-28-0568
http://www.hioki.co.jp E-mail: info-kr@hioki.co.jp

HIOKI USA CORPORATION:

T6-1-609-409-9109 FAX +1-609-409-9108
http://www.hiokiusa.com E-mail: hioki@hiokiusa.com

HIOKI KOREA CO., LTD.:

TEL +82-42-936-1281 FAX +82-42-936-1284
E-mail: info@hioki.co.kr

HIOKI INDIA PRIVATE LIMITED:

TEL +91-731-6548081 FAX +91-731-4020083
E-mail: info@hioki.in

HIOKI SINGAPORE PTE. LTD.:

TEL +65-6634-7677 FAX +65-6634-7477
E-mail: info@hioki.com.sg

HIOKI (Shanghai) SALES & TRADING CO., LTD.:

TEL +86-21-63910090 FAX +86-21-63910360
E-mail: info@hioki.com.cn

HIOKI (Shanghai) SALES & TRADING CO., LTD.:

TEL +86-21-63910090 FAX +86-21-63910360
E-mail: info@hioki.com.cn

All information correct as of Nov. 30, 2012. All specifications are subject to change without notice.